
Nature Food

nature food

https://doi.org/10.1038/s43016-023-00817-7Article

Dual-sensory fusion self-powered 
triboelectric taste-sensing system towards 
effective and low-cost liquid identification

Xuelian Wei1,2, Baocheng Wang1,2, Xiaole Cao1,2, Hanlin Zhou1, Zhiyi Wu    1,2  & 
Zhong Lin Wang    1,3,4 

Infusing human taste perception into smart sensing devices to mimic 
the processing ability of gustatory organs to perceive liquid substances 
remains challenging. Here we developed a self-powered droplet-tasting 
sensor system based on the dynamic morphological changes of droplets 
and liquid–solid contact electrification. The sensor system has achieved 
accuracies of liquid recognition higher than 90% in five different 
applications by combining triboelectric fingerprint signals and deep 
learning. Furthermore, an image sensor is integrated to extract the visual 
features of liquids, and the recognition capability of the liquid-sensing 
system is improved to up to 96.0%. The design of this dual-sensory fusion 
self-powered liquid-sensing system, along with the droplet-tasting sensor 
that can autonomously generate triboelectric signals, provides a promising 
technological approach for the development of effective and low-cost liquid 
sensing for liquid food safety identification and management.

The research on taste sensing is important to the development of the 
food industry, food safety and the innovation of food technology. In 
particular, taste in sensory functions plays a prominent role in the 
identification and analysis of liquid food types. The concept of a bionic 
electronic tongue was first proposed in a study1 in 2005, in which sen-
sor arrays were used to simulate human taste buds for detecting the 
taste of liquid samples. With advances in robotic taste-sensing system 
research, the application of electronic tongue technology is becoming 
increasingly extensive. Among these advances, the chemical sensor is 
the most common method at present. IBM Research has developed a 
chemical taste perception tool, Hypertaste, which uses electrochemi-
cal sensors to quickly and reliably identify different types of liquid2. 
A study3 explored the perceived umami intensity in food matrices 
through chemical analysis and an electronic tongue to provide options 
for food industries to select the proper method for evaluating the per-
ceived umami intensity of various foods. Researchers at the University 
of Cambridge have proposed a robotic set-up that can train chef robots 

to taste the saltiness of food, generating visualized taste images4. In 
addition, electronic tongues or taste sensors have also been applied to 
the wine industry5, pharmaceutical applications6 and the dairy indus-
try7. Electronic tongues can also handle what people would not or could 
not taste. However, the implementation of an electronic taste requires 
costly and complex analysis, and the uncertainty of ‘tasting’ makes it 
difficult for robotic automation. Meanwhile, for the chemical-sensing 
method, because of the selective recognition of sensor units and the 
cross-reaction interaction of sensor arrays, there is a single matching 
problem between the sensor unit and the test object. Regarding energy 
supply in the design of smart sensors, it is inconvenient to frequently 
charge or replace batteries8,9. Therefore, it is necessary to develop 
intelligent taste sensors that can actively generate electrical signals.

Triboelectric sensors with high sensitivity, fast response, light weight 
and low cost are generally designed to monitor small mechanical electri-
cal signals in self-powered mode10. Previous research has made fruitful 
efforts in promoting the intelligent ‘five senses’ with the assistance of 
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TENG with one spatially arranged metallic electrode is fabricated. 
Polymer films with a certain hydrophobicity are considered as con-
tact materials so that droplets can easily slip off the inclined surface 
adhered to a polymer film. Figure 2a shows the charge transfer between 
the water droplet and the polymer. When the water droplet falls and 
makes contact with the polymer surface, the polymer will be negatively 
charged at the contact interface, and the water droplet will be positively 
charged according to the electrical double layer theory (Fig. 2a(i)). The 
charges on the water droplet then continue to accumulate during the 
subsequent sliding process on the polymer surface. When the water 
droplet slides to the copper electrode position, the excess charge on 
the water droplet leads to the induced charge on the copper electrode 
(Fig. 2a(ii)), while the excess charge on the polymer film surface leads 
to another induced charge after the water droplet moves away from the 
electrode position (Fig. 2a(iii)). Finally, the charges on the water droplet 
accumulate until the water droplet drops off the incline (Fig. 2a(iv)). 
Figure 2b shows the morphological changes (Fig. 2b, top and middle, 
and Supplementary Video 2) and the simulation results of the liquid 
volume fraction changes (Figure 2b, bottom, and Supplementary Video 
3) of a droplet sliding down an incline at different moments. Simulta-
neously, the velocity field simulation of a sliding water droplet is also 
shown to better observe the morphological changes of the droplets 
(Supplementary Fig. 1 and Supplementary Video 4).

All the droplets are released from the grounded stainless steel 
needle of a microsyringe pump (50 μl per drop) at a preset velocity, 
and the initial droplet height is fixed at 0.8 cm. During the contact 
process of water droplets with the polymer surface, the morphology 
of the droplet undergoes a dynamic alternation of spreading, contract-
ing and respreading until the droplet falls. The differences in electron 
affinity and physicochemical properties of different liquids allow the 
charge transfer triggered at electrodes to form different triboelectric 
signals, which can then be used as probes for liquid sensing. Consider-
ing the charge saturation effect, we always apply the first droplet in 
our experiments. A series of parameters, such as polymer material, 
droplet type, droplet falling angle, initial velocity, droplet volume and 
electrode width, will affect the subsequent design of the droplet-tasting 
sensor, so it is necessary to conduct further exploration. We quantify 
the parameters by the charge transfer between the polymer film and 
the droplet. Figure 2c shows the output current of deionized (DI) water 
droplets in contact with different triboelectric layer materials. The 
30 μm fluorinated ethylene propylene (FEP) has the highest output 
current, which is inseparable from its good electron affinity and high 
contact angle (Supplementary Fig. 2). Figure 2d compares the output 
current of different electrode widths at different droplet falling angles 
(45°, 50°, 55° and 60°; Supplementary Fig. 3). Compared with other 
sizes, the highest output current is always obtained for an electrode 
width of 1 cm at the same falling angle, which should be influenced by 
a combination of the charge saturation effect and the time required for 
the charge-transfer process between the droplet and the polymer film 
interface. However, the relationship between the droplet falling angle 
and the output current is relatively complicated (Fig. 2f). In addition to 
the moving velocity of the droplet on the inclined plane, the falling angle 
also affects the contact area between the droplet and the polymer film, 
the interaction time between the droplet and the sensing electrode, 
and the dropping point of the droplet on the polymer surface. These 
parameters have different response trends after being affected by the 
falling angle, which jointly act on the output current. A more detailed 
discussion is shown in Supplementary Note 1. Therefore, the falling 
angle is incorporated as a variable for the sensor structure parameters. 
Meanwhile, the charge transfer of five different kinds of droplets slid-
ing on the FEP film is studied (electrode width of 1 cm). The amount of 
charge transfer and the currents for different droplets show distinct dif-
ferences (Fig. 2e). These results sufficiently show that the triboelectric 
signal information can be used as a fingerprint of liquids for identifica-
tion. In addition, for a small falling angle (45°), both the initial velocity 

triboelectric nanogenerators (TENGs; electron transfer is generated 
by friction between different materials in TENGs). Friction is capable of 
generating not only heat but also smell. A closed-loop wearable system 
based on the principle of TENGs and olfactory receptors has been pro-
posed to recognize different gas molecules11. A self-powered triboelectric 
auditory sensor for social robots has been designed12. An ion-doped 
gelatin-hydrogel-based touch sensor has been developed to identify not 
only contact with an object but also deformation force13. Studies14,15 have 
developed tactile sensing in intelligent robots. In addition, taste percep-
tion always subconsciously combines multiple senses, which objectively 
creates the possibility of simultaneous recognition about the same food 
from different angles. For the analysis of liquid, it is more accurate to use 
both taste and sight than to use one of these senses alone.

Here we present a droplet-based triboelectric taste-sensing system 
that integrates two taste-sensing units into a taste sensor and outputs a 
series of triboelectric signals. Combined with deep-learning data ana-
lytics, a ‘liquid fingerprint database’ can be established to implement 
the preliminary identification of different liquids, and a high accuracy 
of 91.3% is achieved in the robot taste application. Furthermore, the 
visual information of different droplets is fused with the sensing sig-
nal information to further extract the complete visual characteristics 
of liquids. Thus, a more comprehensive liquid recognition function 
can be achieved with the assistance of image recognition. We include 
liquid visual information that further facilitates the perception capa-
bility of the taste-sensing system, and the recognition accuracy is up 
to 96.0%. This dual-sensory fusion self-powered liquid-sensing sys-
tem, along with the sensing principle and design of the triboelectric 
droplet-tasting sensor (TDTS) provides an effective and low-cost way of 
evaluating liquid food flavour, detecting sugar, monitoring the environ-
ment and testing alcohol content, without any external power supply. 
The intelligent liquid-sensing system has the potential to improve the 
efficiency of food monitoring and expand the scope of food control 
and has a great pushing effect for the food safety management system 
as an effective means in the rapid detection of liquid food.

Results
Intelligent triboelectric taste-sensing system
The human taste recognition system is a highly complex perceptual 
mechanism, and the tongue is the main organ of taste, with thousands 
of taste receptors (taste buds). Taste buds perform the task of signal 
recognition and signal processing to complete the process of taste 
perception16,17 (Fig. 1a). Inspired by the multisensory interaction of 
the taste system, we designed a deep-learning-network-assisted, intel-
ligent droplet-based taste-sensing system that includes a TDTS and 
an image sensor (Fig. 1b,c). The TDTS consists of two well-designed, 
single-electrode-mode TENGs with independent copper electrodes, 
and has the advantage of actively generating triboelectric signals 
without the need for an external power supply. Feature extraction is 
an important and critical part of realizing the recognition function of 
the intelligent droplet-based taste-sensing system. Specifically, the 
characteristic extraction of liquids in our experiment comes not only 
from the double triboelectric signals generated by droplets triggering 
the two copper electrodes but also from the photographic images of 
the droplets captured by the image sensor. This technique is bound to 
extract more complete feature information of liquids, thus achieving 
a more accurate and comprehensive liquid identification.

Mechanism and parameters of the sensor with one electrode
Inspired by the dynamic morphological changes of a water droplet 
sliding down an inclined surface (Supplementary Video 1) and the 
phenomenon of the droplet in contact with a solid object generat-
ing a triboelectric signal18, we are developing a simple droplet-based 
TENG for efficient liquid sensing by probing the difference in charge 
transfer between liquid and solid surfaces. To concisely and intuitively 
demonstrate the feasibility of this liquid-sensing strategy, a droplet 

http://www.nature.com/natfood


Nature Food

Article https://doi.org/10.1038/s43016-023-00817-7

and the droplet volume show a positive relationship with the output 
current. The current increases with the initial velocity or the droplet 
volume (Fig. 2g,h). The above presentation provides preparation for 
further development of this triboelectric-based droplet-tasting sensor.

Mechanism and sensing characteristics of the TDTS
Taste buds on our tongue help people perceive flavours, and each taste 
bud contains taste cells that can discriminate between different tastes 
(Fig. 3a)19. Although it is not possible to completely simulate the percep-
tion mechanism of the human gustatory system, the basic recognition 
mechanism can be achieved by feedback electrical signals obtained 
through the differences in some major physicochemical properties of 
liquids. Increasing the number of electrodes can obtain more electrical 
signals, so that droplets can better respond to changes of the dynamic 

morphology and output more characteristic information. To increase 
the accuracy of taste sensors, we design a droplet-tasting sensor with 
two spatially arranged electrodes, and the two sets of triboelectric 
signals generated will certainly identify more characteristics of liquids. 
The working mechanism of the TDTS is described, as shown in Fig. 3b. 
A schematic diagram of one electrode and two electrodes is shown 
in Supplementary Fig. 4. A droplet sliding over electrode 1 has been 
described previously (Fig. 2a). This is similar to the droplet sliding 
over electrode 2 and charges on the droplet continue to accumulate. 
Then, when the droplet separates from the bottom of the polymer, the 
metal electrode loses electrons to the ground to shield static charges 
on the polymer surface.

The distance between the two electrodes is investigated as an 
optimization parameter in Fig. 3c and Supplementary Fig. 5. Here, I1 and 
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Fig. 1 | Droplet-based triboelectric taste-sensing system mimicking the 
human taste receptor. a, Schematic diagram of human taste formation. Food 
stimulates taste receptors (taste buds) and information is transmitted through 
the nerves to the taste centre of the brain, which is finally analysed by the brain 

to form the sense of taste. b,c, The intelligent taste-sensing system (b) and its 
recognition process (c) that relies on triboelectric signals and liquid images for 
more accurate taste perception with the assistance of deep learning.
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I2 denote the transferred charges per unit time for electrode 1 and elec-
trode 2, respectively. Therefore, the transferred charges between the 
two electrodes per unit time can be calculated from I1 − I2. The effect of 
the electrode distance on the output current is still relatively obvious, 

regardless of the falling angle. However, when the electrode distance is 
4 cm, the output current is higher than that of other distances (Fig. 3d). 
In addition, the output current of electrode 1 and electrode 2 always 
increases with the initial velocity (the falling angle is 50° or 60°; Fig. 3e). 
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Fig. 2 | The working principle of a droplet-tasting sensor with one spatially 
arranged electrode, the sliding process of a water droplet and the electrical 
output of a single-electrode droplet-tasting sensor. a, Step-by-step principle 
of the droplet-tasting sensor with a single electrode. b, A series of pictures 
detail the dynamic sliding motion of one water droplet. The time represents the 
different moments at which a droplet slides down an inclined plane. The colour 
scale of the heat map (blue) represents the change in liquid volume fraction. The 
droplet height is set at 0.8 cm. c, Output current of a water droplet contacted 
and separated with different materials. The type and thickness of polymer films 
used are indicated on the chart. The inset shows the contact angle of the DI water 
on the surface of 30-μm-thick FEP. d, Output current of single-electrode taste 

sensors with different electrode widths slipping at various angles (DI water, 
30 μm FEP and the initial velocity of the droplet is set to 60 ml h−1). The inset 
shows the red curve (electrode width, 1 cm; falling angle, 45°) and the green curve 
(electrode width, 3 cm; falling angle, 60°). e, Output current of the 30 μm FEP 
with different droplets: tap water, NaCl solution (0.5 M), NaOH solution (pH 13), 
HCl solution (pH 3) and DI water. The red zone represents the forward current, 
and the blue zone indicates the reverse current. x represents the horizontal axis 
in an orthogonal plane coordinate system. f, Output current of a water droplet 
sliding through the sensor placed at different angles (30 μm FEP, 1 cm electrode 
width). g,h, Effect of initial velocity (g) and droplet volume (h) on output signal. 
PVC, polyvinyl chloride.
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Fig. 3 | Mechanism and sensing characteristics of a TDTS for sensing a droplet 
at two electrodes. a, The structure of the taste buds distributed on the human 
tongue. b, Schematic diagram of the TDTS. c, Relationship between the electrode 
distance and the output current of the TDTS under different sliding angles. I1 and 
I2 represent the transferred charges per unit time for electrode 1 and electrode 
2, respectively. d, Comprehensive selection rules of electrode distances for the 
TDTS. e,f, Initial velocity (e) and droplet volume (f) versus output signals from 
electrode 1 and electrode 2. g, Photograph of a TDTS. Scale bar, 4 cm. h, The 

typical current signal profile of the TDTS on electrode 1 and electrode 2 when a 
droplet separated from the FEP film adhered to two copper electrodes. h, The 
current response of the two electrodes. i, Zoomed-in view of h for analysing 
the current response of the two electrodes to a droplet. Waveform refers to 
the complete waveform of the identified liquids corresponding to two current 
signals. Magnitude refers to the magnitude of the currents. Total time represents 
the total time taken to complete the waveforms of liquids. Time slot represents 
the interval time of the valley to the peak.
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The results at 300 ml h−1 are different, from which we can infer that, at 
a large falling angle, the output current is no longer only affected by 
the initial velocity of the droplet but is also related to the contact area 
between the droplet and the polymer film, the interaction time between 
them, the impact position of the droplet on the polymer surface and 
other parameters (Supplementary Note 1).

Figure 3f shows the relationship between droplet volume and out-
put current. We used different types of needle to control the droplet size 
during the experiment. A larger droplet volume brings a larger charge 
transfer, which changes the current amplitude, but the trend of the 
waveform remains consistent. Figure 3g demonstrates the structure of 
the TDTS with an external acrylic shell; this simple and open structure 
enhances the possibility of practical applications. Considering an angle 
of 45°, a pair of current signals with different initial velocities of droplets 
are shown in Fig. 3h, which indicates not only that the amplitude of out-
put currents increases with the velocity when the falling angle is small 
but also that some obvious characteristics can be observed from the 
larger version of the waveforms (Fig. 3i). For example, the magnitudes 
of the forward and reverse current signals, the time slot between the 
peak–valley of a waveform and the time slot between the peak–peak of 
two waveforms can be seen. All these features can be extracted individu-
ally as effective information in preparation for liquid identification.

Triboelectric signal characteristics of different liquids
Based on the above working principle of the TDTS, to further demon-
strate the effectiveness and versatile sensing capability of this liquid 
sensor, the current response from a wider range of liquids, including 14 
different groups of liquids, is tested and enumerated to fully illustrate 
the characteristics of multiple liquids (Fig. 4a). The blue curve repre-
sents the induced current signal generated by the induced electrode 
1, and the red curve corresponds to electrode 2. For comparison, the 
test fluid also contains both drinking water and tap water. The current 
magnitude is an obvious characteristic, which is mainly attributed to 
the differences in the ability of different liquids to gain or lose electrons 
and the concentration of liquid ions. An increased concentration of ions 
can lead to a suppression in the amount of transferred charge, just as a 
salt solution results in a significant reduction of the electric output20. 
Accordingly, compared with white vinegar, drinking water has a greater 
current output due to smaller free ions21 (the current magnitudes of 
electrode 1 (h1) and electrode 2 (h2) of drinking water are higher than 
those of white vinegar; Fig. 4a, top left inset).

In addition, the affinity of various aqueous solutions to the polymer 
film (30 μm FEP) also affects the output electrical signal. Low concen-
trations of monosodium glutamate (MSG) water and sugar water show 
poor affinity for the FEP film, with less liquid residue during the sliding 
process. As a consequence, the overall current output is mainly deter-
mined by the triboelectric signal of water. In contrast, liquor and black 
coffee suspensions more easily adsorb on the surface of FEP than water 
and have more surface residue during sliding, which is more likely to 
result in lower output performance22. Supplementary Video 5 shows the 
triboelectric signal triggered by a coffee droplet sliding on the surface 
of the FEP film. It can be seen clearly that the coffee droplet slides in a 
strand shape (Supplementary Fig. 6d–f), which is directly related to its 
viscosity. Throughout the process of the coffee droplet touching and 
sliding across electrode 1, the coffee flow (strand) does not immediately 
induce triboelectric signals on the program interface. When the front 
end of the coffee flow just touches electrode 2, the electrical curves of 
the two channels begin to appear. As the coffee flow slowly slides on 
the polymer surface, the triboelectric signals in channel 1 and channel 
2 change simultaneously, after which the two signal waveforms tend 
to be complete synchronously (the triboelectric signals generated by 
the black coffee droplet almost coincide in Fig. 4a). We also show the 
triboelectric signal triggered by a water droplet sliding on the surface 
of the FEP film (Supplementary Video 6). When the water droplet first 
contacts electrode 1, a triboelectric signal from channel 1 begins to arise. 

As the water droplet gradually slides to the central position of electrode 
1, the output current curve of channel 1 builds up to a peak, indicating 
that the amount of transferred charge between the droplet and the 
polymer film tends to be saturated. Subsequently, the water droplet 
continues to slide, and there is no waveform in channel 2 at this stage. 
As the water droplet slides to the position of electrode 2, a triboelectric 
signal starts to appear in channel 2, and the waveform of channel 1 is 
gradually complete. Similarly to the sliding seen over electrode 1, the 
output current curve of channel 2 shows a peak as the water droplet 
slides to the centre of electrode 2. After that, the waveforms of both 
channels are gradually complete as the water droplet continues to flow.

In addition, the current waveform (Fig. 4a, top right inset), the 
total time of sliding (Fig. 4a, bottom left inset) and the valley-to-peak 
time slot (Fig. 4a, bottom right inset) are also disturbed. The total 
time taken to complete the waveforms of all liquids is summarized in  
Fig. 4b, where the graph shows the trend of the total time of all meas-
ured liquids more intuitively. Supplementary Figs. 7 and 8 show the data 
for time slot 1 and time slot 2, respectively (where time slot 1 represents 
the interval time of the valley to the peak in response to electrode 1 and 
time slot 2 represents the interval time between the valley of electrode 
1 and the peak of electrode 2). These results further enhance the signal 
differentiation between different liquids.

Figure 4c and Supplementary Fig. 9 show the viscosity of several 
liquids. The viscosity of a fluid directly affects its fluidity. The viscosity 
of both black coffee suspension and liquor is higher than that of other 
fluids, meaning less fluidity. The experimental results also confirm the 
above conclusion. Furthermore, the pH value of the droplet also influ-
ences the output performance. Droplets with different pH values in our 
experiment are aqueous solutions containing a certain concentration of 
HCl and NaOH. This charge-transfer process and the amount of charge 
transferred are related to the ‘screen effect’ of free ions23,24. The change 
in liquid composition will cause a corresponding change in the output 
current signal. If more comprehensively quantified, this type of varia-
tion can provide an ideal sensing ability as a ‘dual characteristic’ of liquid 
for identification, which may have far-reaching application potential in 
robotic taste, the food industry and in environmental sensing25.

Furthermore, the TDTS is able to feed back an instantaneous 
response signal within 90 ms of a falling droplet (Fig. 4d), whether 
it is drinking water, sugar water or white vinegar with poor fluidity, 
indicating the sensitive detection capability of the sensor. Meanwhile, 
the output performance of the TDTS maintains a high detection sta-
bility even after 500 droplets are repeatedly dropped (Fig. 4e and 
Supplementary Fig. 10). In addition, long-term working tests (about 
500 droplets) of the TDTS at different pH conditions and temperature 
and humidity stability tests are shown in Supplementary Figs. 11–17. In 
terms of the application environment, the TDTSs show high stability 
in the face of different conditions. Thus, we obtain a triboelectric taste 
sensor with a simple structure, low cost, stable performance, sensitive 
response and widespread application. The triboelectric fingerprint 
signal characteristics of different liquids can be extracted effectively 
to complete liquid identification in various application scenarios.

Deep-learning-enabled TDTS for liquid identification
Except for the shallow features (such as magnitude, time slot and total 
time) from the current waveform, the dual-triboelectric signals induced 
by droplets contain much subtle information that cannot be identi-
fied by the naked eye. As an emerging technology to extract subtle 
differences, deep learning has been applied to triboelectric signal 
analysis14,26,27. In particular, a convolutional neural network (CNN) can 
effectively extract small but important features hidden in the signals 
through its convolutional layers, becoming another effective tool 
in deep learning28,29. Thus, we propose an intelligent droplet-based 
triboelectric taste-sensing system. With the assistance of the image 
recognition technology based on the CNN, the system is expected to 
realize the robotic perception and identification of many common 
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Fig. 4 | Feature extraction of different liquids from droplet-induced 
triboelectric signals. a, Liquid characteristics (including magnitude, waveform, 
full waveform time and valley-to-peak time slot corresponding to electrode 1) 
obtained from current signals when the TDTS identifies 14 liquids. t1, total time 
required for drinking water to form a complete waveform; t2, total time required 
for liquor (38°) to form a complete waveform; t3, time slot of drinking water from 
the valley to the peak; t4, time slot of sugar water (0.5 g) from the valley to the 
peak; tw, response time of TDTS to white vinegar; ts, response time of TDTS to 
sugar water; td, response time of TDTS to drinking water. b, Summary of the total 

time for a complete waveform for different identified liquids. The red arrows 
indicate the distance of liquids sliding in the same time, which can intuitively 
show that drinking water slides faster than liquor. c, Viscosity test of five liquids 
(drinking water, sugar water, white vinegar, liquor and coffee). d, Response time 
of the TDTS to three types of liquid. e, The current signal generation performance 
for the TDTS with hundreds of water droplets. The different colours represent 
signal curves at several moments in the current signals repeatedly contacted by 
the TDTS and 500 droplets.
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liquids, along with complex signal analysis and liquid recognition in 
several application scenarios.

For robotic taste sensing, multiple triboelectric signals from five 
real-life liquids are collected (white vinegar, liquor, saline water, drink-
ing water and tap water; Fig. 5a). To accommodate various parameters 
in practical application scenarios and achieve higher accuracy of com-
plex identification tasks, the collected raw signals include different 
initial velocities, falling angles and different liquids. Using the same 
method, the current signals of the associated droplets were also col-
lected, including flavour analysis of liquid food (white vinegar, black 
coffee, saline water, drinking water and MSG solution; Supplementary 
Fig. 18), environmental monitoring (pH = 5.6, pH = 8, pH = 9.5, drinking 
water and tap water; Supplementary Fig. 19), and alcohol and sugar 
range tests (liquor with different alcoholicity, sugar water with different 

concentrations and drinking water; Supplementary Fig. 20). More 
concretely, the total dataset used for robotic taste sensing is from five 
different liquids, containing 52,586 samples (training set, 47,330; test 
set, 5,256). In addition, 43,501 samples were used for flavour analysis 
of liquid food (training set, 39,153; test set, 4,348); 42,528 samples were 
applied to environmental monitoring (training set, 38,277; test set, 
4,251); 31,939 samples were used for the sugar test (training set, 28,746; 
test set, 3,193); and the training dataset contained 28,286 samples 
(training set, 25,459; test set, 2,827) for the alcohol range test.

Figure 5b shows the flow diagram of liquid recognition using the 
TDTS with the assistance of deep learning. Before model training, the 
collected droplet data (saved in the form of images) are normalized. 
After feature extraction, 90% of the data are used for Visual Geometry 
Group (VGG) model training, and the remaining data are used to test 
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the accuracy of the model. Here the VGG model consists of eight convo-
lutional and rectified linear unit (ReLU) layers, five pooling layers and 
three fully connected layers. The pre-processed data are colour images 
with uniform size (the input size is 261 × 381 × 3, where 261 and 381 pixels 
represent the height and width of the image, respectively, and 3 repre-
sents the number of channels). The network structure of the VGG model 
is shown in Fig. 5c. The liquid recognition accuracy rate reaches up to 
91.3% under the premise of using only the taste-sensing system. The 
corresponding confusion matrix of the five liquids is shown in Fig. 5d.

Synergistic effect of triboelectric signal and image features
The complete characteristics of liquids also need to take into account 
their visual aspects. Both perceptual modes (taste and vision) can provide 
complementary information about liquids, which makes the analysis of 
liquids more comprehensive and meaningful30. In this work, we choose a 
commercial image sensor for single or continuous droplet image acquisi-
tion. Similar to the deep-learning-assisted data analysis process of the 
droplet-based taste-sensing system, the first step is image data acquisi-
tion. In the experiment, three images are acquired for each unknown 
droplet, and the images are taken from three moments when the droplet 
slides. Moment 1 is defined as the moment when the droplet is about 
to fall from the needle, moment 2 is regarded as the moment when the 
droplet just touches the FEP inclined plane, and the next moment after the 
droplet has touched the plane is moment 3. As shown in Fig. 6a, it is clear 
that the images presented by different droplets are quite different under 
the same sliding time, which is related to their morphology or physical 
properties. Black coffee has the most obvious colour characteristics, 
whereas liquor and white vinegar have a relatively slow sliding speed, 
which coincides with the total time of droplet sliding shown in Fig. 4b. 
Furthermore, the obvious deformation of liquor at moment 3 may be 
recognized as a typical feature of liquor, which also fully corresponds 
to the special waveform that occurs during the sliding process of liquor  
(Fig. 4a). Numerous effective features, including colour, size, slide shape, 
slip velocity and transparency, can be extracted for liquid identification. 
The subtle differences between these features and deeper features con-
tribute to coping with complex recognition scenarios.

Inspired by the multimodal characterization of red wine30, we 
consider realizing droplet-triggered liquid recognition in an integrated 
taste–vision sensing system. Relying on the synergistic effect of a TDTS 
and an image sensor, the features obtained from triboelectric sensing 
signals and visualized images are fused, and then associate with these 
two types of feature data through the VGG model. After training, this 
dual-sensory fusion liquid-sensing system can effectively enhance the 
sensing function of liquids, with an accuracy of 96.0% (Fig. 6b). We also 
analyse and compare the recognition accuracy of using only the taste 
sensor and using both the taste sensor and the image sensor (Supple-
mentary Figs. 21–28). It is worth acknowledging that the accuracy of the 
recognition system using only the taste sensor is consistently higher 
than 90%, demonstrating its ability to recognize liquids. In addition, the 
cooperation of the image sensor further enhances the discriminating 
faculties. The experimental results show that the accuracy of the com-
bined system is higher than that of using only the taste sensor (Fig. 6c). 
The results of this work also show that the discrimination capabilities of 
the intelligent taste-sensing system can be significantly improved when 
features from each liquid are combined to form multimodal features. 
The process of simulating taste perception for several different liquids 
is shown in detail in Supplementary Video 7.

Discussion
Inspired by the perceptual mechanisms of the human taste system, 
we propose an intelligent triboelectric taste-sensing system. When 
different droplets slide through the sensing electrodes, triboelectric 
signals with unique characteristics can be actively generated. These 
characteristic differences depend on a series of liquid-phase differ-
ences triggered by the liquid type, including droplet charge-transfer 

ability, ion concentration, pH value, liquid composition, viscosity and 
slip morphology. With the aid of deep learning, the feature information 
of five common liquids (white vinegar, liquor, saline water, drinking 
water and tap water) is identified. Under the premise of using only two 
independent electrodes, the recognition accuracy reaches 91.3%. This 
self-powered droplet-based triboelectric taste-sensing system provides 
a feasible strategy for developing effective and low-cost liquid-sensing 
technology. In addition, a complete liquid description is inseparable 
from the visual characteristics of liquids. Therefore, we present an intel-
ligent dual-sensory self-powered liquid-sensing system that integrates 
the taste and visual information of different liquids. The introduction 
of visual features complements the liquid recognition function with 
an accuracy of 96.0%. To broaden the application, we used these two 
systems to detect the relevant liquids in five applications (robotic taste 
sensing, flavour analysis of liquid food, sugar detection, environmental 
monitoring and alcohol content test). The identification accuracy of 
both systems is higher than 90%, which sufficiently attests to the pow-
erful perception of these two sensing systems. The integrated system 
is well ahead in recognition.

Future strategies will include developing sensing arrays with new 
materials and sensing systems with multisensor information fusion. 
In addition, sampling databases constructed with complete features, 
construction of flexible model frameworks of deep learning, and the 
development of a miniaturized, intelligent and multifunctional sensing 
system are needed. With the development of higher-level detection 
capabilities and the implementation of a wider identification space, 
this intelligent dual-sensory liquid-sensing system has the potential to 
become a promising tool in the rapid detection of liquid food.

Methods
Materials
Film materials of different kinds and thicknesses (30 μm polytetra-
fluoroethylene (PTFE), 30 μm FEP, 30 μm polyvinyl chloride, 30 μm 
polyimide (Kapton), 60 μm PTFE and 80 μm PTFE) were purchased to 
compare the electrical properties and hydrophobicity in contact with 
droplets. The DI water used in the experiment was produced from a 
laboratory ultrapure water instrument system (Direct-Pure UP-10; 
RephiLe Bioscience), and DI water was also used in the configuration of 
the solutions required in the experiment. Unless otherwise indicated, 
drinking water was obtained from Jingtian bottled water, and tap water 
was taken from domestic water. In addition, white vinegar (Haitian vin-
egar, 5°) and liquor (Redstarwine, 42% vol.) were used. Saline water, cof-
fee suspension, 0.2% and 0.5% MSG, and sugar water were all prepared 
from edible salt, black coffee, gourmet powder and white granulated 
sugar with DI water, respectively. Weak acid and weak base solutions 
with a pH of 5.6, 8 and 9.5 were obtained by diluting buffer solutions.

Fabrication of the TDTS
Two 1-cm-wide copper electrodes, approximately 4 cm apart, were 
glued onto a smooth and clean poly(methyl methacrylate) (PMMA) 
substrate (6 × 12 × 0.2 cm3). After introducing wires separately, a 30 μm 
FEP film was carefully attached onto the PMMA plate with adhered 
electrodes. The attached FEP film must cover all areas of the copper 
electrodes to avoid electrical interference and chemical corrosion of 
the copper by liquid.

Characterization and measurement
We obtained droplets of various volumes using stainless steel needles 
with different orifice diameters (Dongguan Assist Hand Electronic 
Tools); outer diameter: 8 gauge (4 mm), 10 gauge (3.5 mm), 16 gauge 
(1.64 mm) and 17 gauge (1.48 mm). A single-channel microsyringe 
pump (LD-P2020, LANDE; Hebei Wali Electronic Commerce) was 
used to control the initial velocity of the droplets. A large number 
of high-resolution droplet images were captured in real time via an 
industrial camera (MV-CA050; Hikrobot Technology). The viscosity 
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of fluids was measured with a rotary viscometer (Brookfield DV-II Pro). 
Triboelectric signals from different droplets sliding across the surface 
of the taste sensor were collected through Keithley electrometers with 
a LabVIEW program. Two programmable electrometers (6514; Keithley) 
work simultaneously to measure the two current signals. These data 
were acquired, processed and saved as a picture.

VGG model training and optimization
The network structure of VGG11 consists of eight convolution and ReLU 
layers, five pooling layers and three fully connected layers. Using the 
Adam optimizer, the learning rate is set to 0.0001, the total number of 
epochs is 3 and the batch size is 24. The CNN model is developed in the 
Pytorch library and trained on a NVIDIA GeForce RTX 2080 Ti. We can 
divide the network structure of VGG11 into two parts: (1) the first part 
extracts features from the input image samples, which is composed of 
a convolutional layer, a ReLU layer and a pooling layer. The convolu-
tion processing of the model is divided into five phases. The first time, 
1 convolution operation with 64 convolution kernels is implemented. 
The second time goes through 1 convolution with 128 convolutional 
kernels, and the third time performs 2 convolution processes with 256 
convolutional kernels. The fourth and fifth times adopt two convolution 
processes of 512 convolutional kernels. The ReLU function is repeated 
for all operations after convolution processes, and is then followed by 
a max-pooling layer. (2) The second part classifies the samples based on 
the features extracted from the first part, which consists of a fully con-
nected layer, a ReLU layer and a softmax layer31. All the data are flattened 
into a one-dimensional vector, and the corresponding prediction results 
are output by the softmax function after three fully connected layers. 
In addition, because of the widely used small convolution kernels, the 
VGG11 model generally requires fewer iterations in convergence during 
the training process, which speeds up the training speed.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All relevant data are included in the article, Supplementary Information 
and the source data files provided with this paper. All the other raw data 
are available from the corresponding authors on request.

Code availability
The code is available from the corresponding authors upon reason-
able request.
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Data analysis No software was used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

All relevant data are included in the article, Supplementary Information and in the Source Data files provided with this paper. All the other raw data are available 
from the authors on request.
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or 
other socially relevant 
groupings

n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study presents an intelligent dual-sensory liquid sensing system and outputs a series of triboelectric signals that depend on the 
liquid properties. Combined with deep learning technology, a “liquid fingerprint database” can be established to implement the 
preliminary identification of different liquids, and a high accuracy of 91.3% is achieved in the robot taste application. Furthermore, 
the visual information of different droplets is fused to further extract the complete visual characteristics of liquids. Thus, a more 
comprehensive liquid recognition function can be achieved with the assistance of image recognition. The inclusion of liquid visual 
information further facilitates the perception capability of the taste sensing system, and the recognition accuracy is up to 96.0%. This 
dual-sensory fusion self-powered liquid sensing system, along with the sensing principle and design of the triboelectric droplet-
tasting sensor, not only helps robots to perceive the external world, but also provides an effective and low-cost way of thinking for 
liquid food flavor, sugar detection, environmental monitoring, and alcohol content test, without any external power supply. It can be 
predicted that this intelligent liquid sensing system will serve as an effective mean of the liquid food safety rapid determination, 
which can improve the efficiency of food monitoring, expand the scope of food control, and has the initiative significance and motive 
effect for the food safety management system.

Research sample The total dataset used for robotic taste sensing is from five different liquids  (white vinegar, liquor, saline water, drinking water, and 
tap water), containing 52,586 samples; In addition, 43,501 samples were used for flavor analysis of liquid food (white vinegar, black 
coffee, saline water, drinking water, and MSG solution); 42,528 samples were applied to environmental monitoring (pH = 5.6, pH = 8, 
pH = 9.5, drinking water, and tap water); 31,939 samples were used for the drink sugar test; And the training dataset contained 
28,286 samples for the alcohol range test (liquor with different alcoholicity, sugar water with different concentrations, and drinking 
water).  

Sampling strategy The selection of sample size mainly refers to previous related works. Of course, different sample and different sample sizes were 
selected for pre-experiments before determining the sample size, which can verify the uniformity of samples and reduce the 
influence of accidental samples on the experimental results. In addition, the random sampling method was applied to avoid the 
interference of subjectivity to the accuracy of the experiment .

Data collection The data were collected through Keithley electrometers with a LabVIEW program. Two programmable electrometers (Keithley 6514) 
work simultaneously to measure the two current signals.

Timing and spatial scale June 2nd-July 12th. The random sampling method was applied to avoid the interference of subjectivity to the accuracy of the 
experiment.

Data exclusions No data were excluded from the analyses.

Reproducibility All attempts to repeat the experiment were successful.

Randomization n/a

Blinding n/a
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Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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